Dissemin is shutting down on January 1st, 2025

Published in

American Diabetes Association, Diabetes, 4(69), p. 591-602, 2020

DOI: 10.2337/db19-0388

Links

Tools

Export citation

Search in Google Scholar

Liver ChREBP Protects Against Fructose-Induced Glycogenic Hepatotoxicity by Regulating L-Type Pyruvate Kinase

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Excessive fructose consumption is closely linked to the pathogenesis of metabolic disease. Carbohydrate response element-binding protein (ChREBP) is a transcription factor essential for fructose tolerance in mice. However, the functional significance of liver ChREBP in fructose metabolism remains unclear. Here, we show that liver ChREBP protects mice against fructose-induced hepatotoxicity by regulating liver glycogen metabolism and ATP homeostasis. Liver-specific ablation of ChREBP did not compromise fructose tolerance, but rather caused severe transaminitis and hepatomegaly with massive glycogen overload in mice fed a high-fructose diet, while no obvious inflammation, cell death, or fibrosis was detected in the liver. In addition, liver ATP contents were significantly decreased by ChREBP deficiency in the fed state, which was rendered more pronounced by fructose feeding. Mechanistically, liver contents of glucose-6-phosphate (G6P), an allosteric activator of glycogen synthase, were markedly increased in the absence of liver ChREBP, while fasting-induced glycogen breakdown was not compromised. Furthermore, hepatic overexpression of LPK, a ChREBP target gene in glycolysis, could effectively rescue glycogen overload and ATP reduction, as well as mitigate fructose-induced hepatotoxicity in ChREBP-deficient mice. Taken together, our findings establish a critical role of liver ChREBP in coping with hepatic fructose stress and protecting from hepatotoxicity by regulating LPK.