Published in

CSIRO Publishing, Soil Research, 3(58), p. 238, 2020

DOI: 10.1071/sr19207

Links

Tools

Export citation

Search in Google Scholar

Low seasonal nitrous oxide emissions in tea tree farming systems following nitrogen fertilisation using poultry litter application or green manure legumes

Journal article published in 2020 by Terry J. Rose ORCID, Lee J. Kearney, Stephen Morris, Lukas Van Zwieten ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The integration of legumes into coppiced tree crop systems to replace some or all of the external nitrogen (N) fertiliser requirements may be one means to lower seasonal nitrous oxide (N2O) emissions. We investigated soil N2O emissions using static chamber methodology in field trials located within two commercial tea tree (Melaleuca alternifolia) plantations (Casino and Tweed Heads) where N (116 and 132 kg N ha–1 respectively) was supplied via poultry litter application (5 t wet ha–1) or by termination of annual legumes (soybean or mung bean) grown in the inter-row. While there was no treatment effect at the Tweed Heads site, both legume treatments had significantly (P = 0.01) lower cumulative N2O emissions (0.33 and 0.30 kg N2O-N ha–1 season–1 for soybean and mung beans respectively) than the poultry litter treatment (0.66 kg N2O-N ha–1 season–1) at the Casino site. However, the amount of N added to soils in each treatment was not identical owing to an inability to accurately predict N inputs by legume crops, and thus differences could not be attributed to the N source. A third site was thus established at Leeville comparing N2O emissions from poultry litter amendment (5 t wet ha–1 contributing 161 kg N ha–1) to an inter-row faba bean crop (contributing 92 kg N ha–1) and a nil-N control. Cumulative seasonal N2O emissions were significantly (P < 0.05) lower in the faba bean treatment than the poultry litter treatment (0.08 and 0.23 kg N2O-N ha–1 season–1 respectively), but owing to different N inputs and generally low emissions, it was not possible to draw definitive conclusions on whether green manure legume crops can lower N2O emissions. Overall, soil N2O emissions in coppiced tea tree systems under current management practices were very low, offering limited potential to reduce seasonal N2O emissions through management practice change.