Published in

Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 3(105), p. e502-e510, 2019

DOI: 10.1210/clinem/dgz097

Links

Tools

Export citation

Search in Google Scholar

Glucose-Dependent Insulinotropic Polypeptide Is a Pancreatic Polypeptide Secretagogue in Humans

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Glucose-dependent insulinotropic polypeptide (GIP) has been suggested to stimulate the secretion of pancreatic polypeptide (PP), an islet hormone thought to regulate gut motility, appetite, and glycemia. Objective To determine whether human GIP1-42 (hGIP) stimulates PP secretion. Method As glycemia modulates the secretion of PP, we measured plasma PP concentrations from 2 studies in healthy men (n = 10) and in patients with type 2 diabetes (T2D) (n = 12), where hGIP1-42 had been administered intravenously during fasting glycemia, hyperglycemia (12 mmol/L), and insulin-induced hypoglycemia (targets: 2.5 mmol/L [healthy]; 3.5 mmol/L [T2D]). Porcine GIP1-42 (pGIP) was also infused intra-arterially in isolated porcine pancreata (n = 4). Results Mean fasting plasma glucose concentrations were approximately 5 mmol/L (healthy) and approximately 8 mmol/L (T2D). At fasting glycemia, PP concentrations were higher during intravenous hGIP1-42 infusion compared with saline in healthy men (mean [standard error of the mean, SEM], net incremental areas under the curves (iAUCs)[0-30min], 403 [116] vs –6 [57] pmol/L × min; P = 0.004) and in patients with T2D (905 [177] vs –96 [86] pmol/L × min; P = 0.009). During hyperglycemic clamping, mean [SEM] PP concentrations were significantly higher during hGIP1-42 infusion compared with saline in patients with T2D (771 [160] vs –183 [117] pmol/L × min; P = 0.001), but not in healthy individuals (–8 [86] vs –57 [53] pmol/L × min; P = 0.69). When plasma glucose levels were declining in response to exogenous insulin, mean [SEM] PP concentrations were higher during hGIP1-42 infusion compared with saline in healthy individuals (294 [88] vs –82 [53] pmol/L × min; P = 0.0025), but not significantly higher in patients with T2D (586 [314] vs –120 [53]; P = 0.070). At target hypoglycemia, PP levels surged in both groups during both hGIP1-42 and saline infusions. In isolated pancreata, pGIP1-42 increased mean [SEM] PP output in the pancreatic venous effluent (baseline vs infusion, 24[5] vs 79 [16] pmol/min x min; P = 0.044). Conclusion GIP1-42 increases plasma PP secretion in healthy individuals, patients with T2D, and isolated porcine pancreata. Hyperglycemia blunts the stimulatory effect of hGIP1-42 in healthy individuals, but not in patients with T2D.