Published in

MDPI, Remote Sensing, 6(12), p. 970, 2020

DOI: 10.3390/rs12060970

Links

Tools

Export citation

Search in Google Scholar

Recognizing Eruptions of Mount Etna through Machine Learning Using Multiperspective Infrared Images

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Detecting, locating and characterizing volcanic eruptions at an early stage provides the best means to plan and mitigate against potential hazards. Here, we present an automatic system which is able to recognize and classify the main types of eruptive activity occurring at Mount Etna by exploiting infrared images acquired using thermal cameras installed around the volcano. The system employs a machine learning approach based on a Decision Tree tool and a Bag of Words-based classifier. The Decision Tree provides information on the visibility level of the monitored area, while the Bag of Words-based classifier detects the onset of eruptive activity and recognizes the eruption type as either explosion and/or lava flow or plume degassing/ash. Applied in real-time to each image of each of the thermal cameras placed around Etna, the proposed system provides two outputs, namely, visibility level and recognized eruptive activity status. By merging these outcomes, the monitored phenomena can be fully described from different perspectives to acquire more in-depth information in real time and in an automatic way.