Published in

De Gruyter, Journal of Pediatric Endocrinology and Metabolism, 5(33), p. 623-630, 2020

DOI: 10.1515/jpem-2019-0400

Links

Tools

Export citation

Search in Google Scholar

Effects of whole-body vibration training on bone density and turnover markers in adolescent swimmers

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractBackgroundWhole-body vibration training has recently been proposed as a complementary training modality to improve the bone health of adolescent swimmers. However, there is no longitudinal study regarding the effects of this training combination on bone metabolism. Therefore, the main goal was to analyze the effects of swimming and vibration training on bone turnover markers during adolescence.MethodsThe present study included 68 adolescent swimmers and 41 normoactive controls (CON). Swimmers were randomly selected to either continue with their regular swimming training (SWI) or participate in an additional vibration protocol (VIB). Anthropometric measurements and serum level determinations of osteocalcin (OC), procollagen type 1 N-terminal propeptide (P1NP) and C-terminal telopeptide crosslaps (CTX) were performed before and after the 6-month intervention.ResultsStatistically significant group by time interactions were found for both bone formation markers. VIB showed a decrease over time in OC (baseline: 101.4 μg/mL, follow-up: 82.8 μg/mL, p < 0.05) and P1NP (baseline: 528.4 μg/mL, follow-up: 389.0 μg/mL, p < 0.05) and SWI had analogous reductions in P1NP (baseline: 685.8 μg/mL, follow-up: 542.0 μg/mL, p < 0.05), whereas CON experienced an increase in OC levels (baseline: 94.4 μg/mL, follow-up: 103.4 μg/mL, p < 0.05). After stratifying the sample according to the pubertal status, similar interactions were observed.ConclusionsThe combination of swimming training and this particular vibration protocol led to a decrease in bone formation markers, especially during early puberty. Whole-body vibration might not induce an osteogenic stimulus in adolescent swimmers.