Dissemin is shutting down on January 1st, 2025

Published in

Portland Press, Bioscience Reports, 4(40), 2020

DOI: 10.1042/bsr20200287

Links

Tools

Export citation

Search in Google Scholar

Hepatocyte growth factor protects PC12 cells against OGD/R-induced injury by reducing iron

Journal article published in 2020 by Siyue Li, Zhong-Ming Qian ORCID, Gaojing Xu, Jie Zheng, Yi Wu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract In the light of hepatocyte growth factor (HGF) the inhibiting role on the expression of hepcidin, we hypothesized that HGF might be able to reduce cell and tissue iron by increasing ferroportin 1 (Fpn1) content and Fpn1-mediated iron release from cells and tissues. The hypothesized ability of HGF to reduce iron might be one of the mechanisms associated with its neuroprotective action under the conditions of ischemia/reperfusion (I/R). Here, we investigated the effects of HGF on the expression of hepcidin as well as transferrin receptor 1 (TfR1), divalent metal transporter 1 (DMT1), Fpn1, ferritin and iron regulatory proteins (IRPs) in oxygen-glucose deprivation and reoxygenation (OGD/R)-treated PC12 cells by real-time PCR and Western blot analysis. We demonstrated that HGF could completely reverse the OGD/R-induced reduction in Fpn1 and IRP1 expression and increase in ferritin light chain protein and hepcidin mRNA levels in PC12 cells. It was concluded that HGF protects PC12 cells against OGD/R-induced injury mainly by reducing cell iron contents via the up-regulation of Fpn1 and increased Fpn1-mediated iron export from cells. Our findings suggested that HGF may also be able to ameliorate OGD/R or I/R-induced overloading of brain iron by promoting Fpn1 expression.