Published in

Elsevier, Chemical Engineering Science, 15(58), p. 3489-3498

DOI: 10.1016/s0009-2509(03)00214-8

Links

Tools

Export citation

Search in Google Scholar

Modelling the motion of cylindrical particles in a nonuniform flow

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The models currently used in computational fluid dynamics codes to predict solid fuel combustion rely on a spherical shape assumption. Cylinders and disks represent a much better geometrical approximation to the shape of bio-fuels such as straws and woods chips. A sphere gives an extreme in terms of the volume-to-surface-area ratio, which impacts both motion and reaction of a particle. For a nonspherical particle, an additional lift force becomes important, and generally hydrodynamic forces introduce a torque on the particle as the centre of pressure does not coincide with the centre of mass. Therefore, rotation of a nonspherical particle needs to be considered. This paper derives a model for tracking nonspherical particles in a nonuniform flow field, which is validated by a preliminary experimental study: the calculated results agree well with measurements in both translation and rotation aspects. The model allows to take into account shape details of nonspherical particles so that both the motion and the chemical reaction of particles can be modelled more reasonably. The ultimate goal of such a study is to simulate flow and combustion in biomass-fired furnaces using nonspherical particle tracking model instead of traditional sphere assumption, and thus improve the design of biomass-fired boilers.