Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-41830-w

Links

Tools

Export citation

Search in Google Scholar

Illumina sequencing of clinical samples for virus detection in a public health laboratory

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHigh-throughput sequencing (HTS) provides the opportunity, once a diagnostic result is obtained, to extract additional information from a virus-containing sample. Hence, it offers advantages over established quantitative amplification technology, such as quantitative PCR, particularly in a public health environment. At this early stage of its clinical application, there have been limited studies comparing HTS performance to that of the more established quantitative PCR technology for direct detection of viruses. In this pilot-scale study, we tested HTS with a range of viruses and sample types routinely encountered in a public health virology laboratory. In comparison with quantitative PCR, our HTS method was able to sensitively (92%) detect all viruses in any sample type with the exception of certain tissues. Moreover, sufficient nucleotide sequence information was obtained to enable genotyping of strains detected, thus providing additional useful epidemiological information. While HTS sensitivity may not yet match that of PCR, the added value through enhanced epidemiological data has considerable potential to enable real-time surveillance of circulating strains so as to facilitate rapid and appropriate response to outbreaks and virus zoonotic spillover events.