Published in

4th Annual International Power Electronics, Drive Systems and Technologies Conference

DOI: 10.1109/pedstc.2013.6506761

Links

Tools

Export citation

Search in Google Scholar

Second Order Generalized Integrator Based Reference Current Generation Method for Single-Phase Shunt Active Power Filters Under Adverse Grid Conditions

Journal article published in 2013 by Saeed Golestan, Mohammad Monfared, Josep M. Guerrero ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reference current generation (RCG) is a crucial part in the control of a shunt active power filter (APF). A variety of RCG techniques have been proposed in literature. Among these, the instantaneous reactive power theory, called pq theory, is probably the most widely used technique. The pq theory offers advantages such as satisfactory steady-state and dynamic performance, and at the same time simple digital implementation, however its application was limited to three-phase systems. To exploit the advantages of pq theory in single-phase systems, the single-phase pq theory has been proposed recently. In this paper, a simple and effective implementation of the single phase pq theory for single-phase shunt APFs is proposed. The suggested approach is based on employing second order generalized integrators (SOGI), and a phase locked loop (PLL). To fine tune the control parameters, a systematic design procedure based on the pole-zero cancellation, and the extended symmetrical optimum theory is proposed. During the design procedure, the effects of grid frequency variations and the presence of distortion in the grid voltage are taken into account. Finally, to confirm the effectiveness of the suggested approach, simulation results are presented.