Published in

Microbiology Society, Journal of Medical Microbiology, 3(69), p. 402-413, 2020

DOI: 10.1099/jmm.0.001148

Links

Tools

Export citation

Search in Google Scholar

Investigation of LuxS-mediated quorum sensing in Klebsiella pneumoniae

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Introduction. Autoinducer-2 (AI-2) quorum sensing is a bacterial communication system that responds to cell density. The system requires luxS activity to produce AI-2, which can regulate gene expression and processes such as biofilm formation. Aim. To investigate the role of luxS in biofilm formation and gene expression in the nosocomial pathogen Klebsiella pneumoniae . Methodology. A ΔluxS gene deletion was made in K. pneumoniae KP563, an extensively drug-resistant isolate. AI-2 production was assessed in wild-type and ΔluxS strains grown in media supplemented with different carbohydrates. Potential roles of luxS in biofilm formation were investigated using a microtiter plate biofilm assay and scanning electron microscopy. Quantitative RT-PCR evaluated the expression of lipopolysaccharide (wzm and wbbM), polysaccharide (pgaA), and type 3 fimbriae (mrkA) synthesis genes in wild-type and ΔluxS mutant biofilm extracts. Results. AI-2 production was dependent on the presence of luxS. AI-2 accumulation was highest during early stationary phase in media supplemented with glucose, sucrose or glycerol. Changes in biofilm architecture were observed in the ΔluxS mutant, with less surface coverage and reduced macrocolony formation; however, no differences in biofilm formation between the wild-type and ΔluxS mutant using a microtiter plate assay were observed. In ΔluxS mutant biofilm extracts, the expression of wzm was down-regulated, and the expression of pgaA, which encodes a porin for poly-β−1,6-N-acetyl-d-glucosamine (PNAG) polysaccharide secretion, was upregulated. Conclusion. Relationships among AI-2-mediated quorum sensing, biofilm formation and gene expression of outer-membrane components were identified in K. pneumoniae . These inter-connected processes could be important for bacterial group behaviour and persistence.