Published in

American Association for the Advancement of Science, Science, 6447(364), 2019

DOI: 10.1126/science.aaw2872

Links

Tools

Export citation

Search in Google Scholar

Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

APOBEC3A hairpin passenger hotspots Genomic features are often examined at extremes to determine the impact of mutations. These genomic regions span from the trinucleotide context to megabases that underlie chromatin and chromosomal features. Examining mutational dynamics at the mesoscale, the intermediate span of the genome, Buisson et al. characterized the mutational dynamics of cancer (see the Perspective by Carter). They found that mutations caused by the APOBEC enzyme in DNA stem-loops, a mesoscale feature of the genome, could drive recurrent mutations. Many of these types of mutations have been identified as likely drivers of cancer. However, APOBEC-generated mutations outside of stem-loops were more likely to be cancer driver mutations, providing a genomic context for separating cancer driver from passenger mutations. Science , this issue p. eaaw2872 ; see also p. 1228