Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 11(203), p. 2917-2927, 2019

DOI: 10.4049/jimmunol.1900674

Links

Tools

Export citation

Search in Google Scholar

MR1-Independent Activation of Human Mucosal-Associated Invariant T Cells by Mycobacteria

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Tuberculosis (TB) is the leading cause of mortality from a single infectious agent, Mycobacterium tuberculosis. Relevant immune targets of the partially efficacious TB vaccine bacille Calmette–Guérin (BCG) remain poorly defined. Mucosal-associated invariant T (MAIT) cells are MHC-related protein 1 (MR1)–restricted T cells, which are reactive against M. tuberculosis, and underexplored as potential TB vaccine targets. We sought to determine whether BCG vaccination activated mycobacteria-specific MAIT cell responses in humans. We analyzed whole blood samples from M. tuberculosis–infected South African adults who were revaccinated with BCG after a six-month course of isoniazid preventative therapy. In vitro BCG stimulation potently induced IFN-γ expression by phenotypic (CD8+CD26+CD161+) MAIT cells, which constituted the majority (75%) of BCG-reactive IFN-γ–producing CD8+ T cells. BCG revaccination transiently expanded peripheral blood frequencies of BCG-reactive IFN-γ+ MAIT cells, which returned to baseline frequencies a year following vaccination. In another cohort of healthy adults who received BCG at birth, 53% of mycobacteria-reactive–activated CD8 T cells expressed CDR3α TCRs, previously reported as MAIT TCRs, expressing the canonical TRAV1-2-TRAJ33 MAIT TCRα rearrangement. CD26 and CD161 coexpression correlated with TRAV1-2+CD161+ phenotype more accurately in CD8+ than CD4−CD8− MAIT cells. Interestingly, BCG-induced IFN-γ expression by MAIT cells in vitro was mediated by the innate cytokines IL-12 and IL-18 more than MR1-induced TCR signaling, suggesting TCR-independent activation. Collectively, the data suggest that activation of blood MAIT cells by innate inflammatory cytokines is a major mechanism of responsiveness to vaccination with whole cell vaccines against TB or in vitro stimulation with mycobacteria (Clinical trial registration: NCT01119521).