Published in

Geological Society of America, Geology, 6(48), p. 569-573, 2020

DOI: 10.1130/g47137.1

Links

Tools

Export citation

Search in Google Scholar

Stress variations in space and time within the mantle section of an oceanic transform zone: Evidence for the seismic cycle

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe Bogota Peninsula shear zone in New Caledonia (southwest Pacific Ocean) is the exhumed mantle section of an oceanic transform zone. Ductile fabrics in this zone formed at temperatures >820 °C, and differential stresses estimated from microstructures vary spatially and temporally. Along a transform-perpendicular transect, stresses increase toward the high-strain areas. We attribute this stress gradient to an increase in strain rate caused by imposed rather than intrinsic strain localization. Temporal stress variations are indicated by the formation of fine-grained microdeformation zones (MDZs) that truncate and offset coarser grains. We interpret the MDZs to result from zones of brittle deformation caused by earthquake fracture propagation downward in the upper mantle, which are in turn overprinted by ductile deformation at stresses 2–6 times higher (22–81 MPa) than their surrounding steady-state fabrics. We interpret the spatial and temporal variations in microstructures and stresses as reflecting different stages of the seismic cycle in oceanic lithosphere.