Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Letters, 7(45), p. 2006, 2020

DOI: 10.1364/ol.386360

Links

Tools

Export citation

Search in Google Scholar

In vivo optoacoustic monitoring of percutaneous laser ablation of tumors in a murine breast cancer model

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Laser ablation (LA) is a promising approach for minimally invasive cancer treatments. Its in vivo applicability is often impeded by the lack of efficient monitoring tools that can help to minimize collateral tissue damage and aid in determining the optimal treatment end-points. We have devised a new, to the best of our knowledge, hybrid LA approach combining simultaneous volumetric optoacoustic (OA) imaging to monitor the lesion progression accurately in real time and 3D. Time-lapse imaging of laser ablation of solid tumors was performed in a murine breast cancer model in vivo by irradiation of subcutaneous tumors with a 100 mJ short-pulsed ( ∼ 5 n s ) laser operating at 1064 nm and 100 Hz pulse repetition frequency. Local changes in the OA signal intensity ascribed to structural alterations in the tumor vasculature were clearly observed, while the OA volumetric projections recorded in vivo appeared to correlate with cross sections of the excised tumors.