Dissemin is shutting down on January 1st, 2025

Published in

Canadian Science Publishing, Canadian Journal of Forest Research, 7(50), p. 689-703, 2020

DOI: 10.1139/cjfr-2019-0368

Links

Tools

Export citation

Search in Google Scholar

Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed-mountain forests during the last three centuries

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 × 106 ha at elevations between ∼600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today’s growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.