Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], British Journal of Cancer, 11(122), p. 1695-1706, 2020

DOI: 10.1038/s41416-020-0809-7

Links

Tools

Export citation

Search in Google Scholar

Regulation of the small GTPase Ran by miR-802 modulates proliferation and metastasis in colorectal cancer cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The small GTPase Ran is upregulated in multiple cancers and fundamental for cancer cell survival and progression, but its significance and molecular mechanisms in colorectal cancer (CRC) remain elusive. Methods Ran expression was detected in CRC cell lines and tumour tissues. In vitro and in vivo functional assays were performed to examine the effects of Ran on cell proliferation and metastasis. The pathways and effectors regulated by Ran were explored by an unbiased screening. Bioinformatics prediction and experimental validation were used to identify the miRNA regulator for Ran. Results Ran expression was frequently increased in metastatic CRC cells and tissues, especially in metastatic tissues. The upregulation of Ran correlated with poor CRC patient prognosis. Ran silencing reduced proliferation and metastasis of CRC cells both in vitro and in vivo. Ran regulated the expression of EGFR and activation of ERK and AKT signalling pathways. miR-802 was identified as an upstream regulator of Ran and miR-802 overexpression resulted in antiproliferative and antimetastatic activities. Conclusion Our study demonstrates the oncogenic roles and underlying mechanisms of Ran in CRC and the novel miR-802/Ran/EGFR regulatory axis may provide potential biomarkers for the treatment of CRC.