Published in

MDPI, Polymers, 3(12), p. 695, 2020

DOI: 10.3390/polym12030695

Links

Tools

Export citation

Search in Google Scholar

Magnetic-Electrospinning Synthesis of γ-Fe2O3 Nanoparticle–Embedded Flexible Nanofibrous Films for Electromagnetic Shielding

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The exploration of a new family of flexible and high-performance electromagnetic shielding materials is of great significance to the next generation of intelligent electronic products. In this paper, we report a simple magnetic-electrospinning (MES) method for the preparation of a magnetic flexible film, γ-Fe2O3 nanoparticle-embedded polymeric nanofibers. By introducing the extra magnetic field force on γ-Fe2O3 nanoparticles within composite fibers, the critical voltage for spinning has been reduced, along with decreased fiber diameters. The MES fibers showed increased strength for the magnetic field alignment of the micro magnets, and the attraction between them assisted the increase in fiber strength. The MES fibers show modifications of the magnetic properties and electrical conductivity, thus leading to better electromagnetic shielding performance.