Published in

Springer, Strahlentherapie und Onkologie, 4(196), p. 398-404, 2020

DOI: 10.1007/s00066-020-01586-z

Links

Tools

Export citation

Search in Google Scholar

Intraoperative radiotherapy for breast cancer treatment efficiently targets the tumor bed preventing breast adipose stromal cell outgrowth

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Objectives Mesenchymal stromal cells (MSC) in bone marrow have been shown to be radioresistant, which is related to pronounced DNA repair mechanisms. Intraoperative radiotherapy (IORT) during breast-conserving surgery for early breast cancer is an innovative technique applying low energy x‑ray to the tumor bed immediately after removal of the tumor. IORT is considered to reduce the risk of local tumor recurrence by directly targeting cells of the tumor bed and altering the local microenvironment. Aim of this study was to investigate whether IORT affects the outgrowth potential of breast adipose tissue-derived MSC (bASC) as part of the tumor bed. Materials and methods After surgical tumor resection, biopsies of the tumor bed were taken before (pre IORT) and after IORT (post IORT) and processed applying well-established protocols for ASC isolation and characterization. Results In all, 95% of pre IORT tumor bed samples yielded persistently outgrowing bASC with typical ASC characteristics: fibroblastoid morphology, proliferation, adipogenic and osteogenic differentiation and ASC surface marker expression. However, none of the post IORT samples yielded persistent outgrowth of bASC. Conclusions After breast-conserving surgery, approximately 90% of local recurrences emerge in close proximity to the initial tumor bed, potentially reflecting a significant contribution of the tumor bed to relapse. Our data show that IORT, besides the proven effect on breast cancer cells, efficiently modifies the tumor environment by having an impact on tumor bed bASC. This effect on tumor bed stromal cells might contribute to reduce the risk of tumor relapse and metastases.