Published in

Oxford University Press, Geophysical Journal International, 3(221), p. 1696-1718, 2020

DOI: 10.1093/gji/ggaa090

Links

Tools

Export citation

Search in Google Scholar

Satellite imaging of the 2015 M7.2 earthquake in the Central Pamir, Tajikistan, elucidates a sequence of shallow strike-slip ruptures of the Sarez-Karakul fault

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

SUMMARYOn 7 December 2015, a shallow Mw 7.2 strike-slip earthquake struck the Murghab River Valley in the Central Pamirs of Tajikistan. Seismologically this event was similar to a large seismic event in 1911 whose causative fault has never been identified. We measure the displacement field of the 2015 event from satellite observations using Sentinel-1 radar interferometry, Landsat-8 optical pixel-tracking, and surface rupture mapping from high resolution SPOT-6/7 imagery to characterize the role this earthquake rupture plays in the accommodation of strain on its causative structure, the Sarez-Karakul fault. We present geomorphic mapping and interpretations of other Quaternary-active reaches of this fault system, which highlight variable rupture history of the different sections. These sections appear to be separated by inherited bedrock structural boundaries. Significantly, the reaches of the fault northeast and southwest of the 2015 rupture exhibit the freshest morphology prior to 2015, indicative of a more recent rupture than elsewhere. Using new high resolution imagery we map fresh scarps at the northern and southern ends of the Sarez-Karakul fault which may represent this 1911 rupture. To test which of these reaches could have been the source of the elusive 1911 event, we compare synthetic seismograms from three plausible fault sources determined from geomorphology, with observed seismic traces from 1911 at early recording stations throughout Europe. We find that the best fitting fault source is in fact southwest of the 2015 rupture, meaning that we have a record of three distinct recent events on the Sarez-Karakul fault system—two of them instrumentally recorded. Our mapping of these separate events reveals a correlation between their boundaries and the active and inherited thrust and suture systems that intersect the northeast striking left-lateral fault, suggesting structural control over the extents of individual ruptures on the active strike-slip fault.