Springer, Transactions of Tianjin University: Advanced Energy Chemistry and Materials, 2(26), p. 142-147, 2020
DOI: 10.1007/s12209-020-00232-0
Full text: Download
AbstractLithium-ion batteries (LIBs) have been developed for over 30 years; however, existing electrode materials cannot satisfy the increasing requirements of high-energy density, stable cycling, and low cost. Here, we present a perovskite-type LaNiO3 oxide (LNO) as a new negative electrode material. LNO was successfully synthesized by a sol–gel method. The microstructure and electrochemical performance of LNO calcined at various temperatures have been systematically investigated. The LNO electrode shows a high rate capability and long cycling stability. In a C-rate test, a specific capacity of 77 mAh/g was exhibited at 6 C. LNO can also deliver a specific capacity of 92 mAh/g after 200 cycles at 1 C. This paper presents a type of binary metal oxide as a new anode material for high-performance LIBs.