Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Nano Express, 1(1), p. 010008, 2020

DOI: 10.1088/2632-959x/ab7cb3

Links

Tools

Export citation

Search in Google Scholar

Substitutional transition metal doping in MoS2: a first-principles study

Journal article published in 2020 by Anthony Yoshimura ORCID, Nikhil Koratkar ORCID, Vincent Meunier ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Single-layer MoS2 is a direct-gap semiconductor whose band edges character is dominated by the d-orbitals of the Mo atoms. It follows that substitutional doping of the Mo atoms has a significant impact on the material’s electronic properties, namely the size of the band gap and the position of the Fermi level. Here, density functional theory is used along with the G0W0 method to examine the effects of substituting Mo with four different transition metal dopants: Nb, Tc, Ta, and Re. Nb and Ta possess one less valence electron than Mo does and are therefore p-type dopants, while Re and Tc are n-type dopants, having one more valence electron than Mo has. Four types of substitutional structures are considered for each dopant species: isolated atoms, lines, three-atom clusters centered on a S atom (c3s), and three-atom clusters centered on a hole (c3h). The c3h structure is found to be the most stable configuration for all dopant species. However, electronic structure calculations reveal that isolated dopants are preferable for efficient n- or p-type performance. Lastly, it is shown that photoluminescence measurements can provide valuable insight into the atomic structure of the doped material. Understanding these properties of substitutionally-doped MoS2 can allow for its successful implementation into cutting-edge solid state devices.