Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Molecules, 6(25), p. 1329, 2020

DOI: 10.3390/molecules25061329

Links

Tools

Export citation

Search in Google Scholar

Design, Synthesis and Biological Evaluation of New Antioxidant and Neuroprotective Multitarget Directed Ligands Able to Block Calcium Channels

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report herein the design, synthesis and biological evaluation of new antioxidant and neuroprotective multitarget directed ligands (MTDLs) able to block Ca2+ channels. New dialkyl 2,6-dimethyl-4-(4-(prop-2-yn-1-yloxy)phenyl)-1,4-dihydropyridine-3,5-dicarboxylate MTDLs 3a–t, resulting from the juxtaposition of nimodipine, a Ca2+ channel antagonist, and rasagiline, a known MAO inhibitor, have been obtained from appropriate and commercially available precursors using a Hantzsch reaction. Pertinent biological analysis has prompted us to identify the MTDL 3,5-dimethyl-2,6–dimethyl–4-[4-(prop–2–yn–1-yloxy)phenyl]-1,4-dihydro- pyridine- 3,5-dicarboxylate (3a), as an attractive antioxidant (1.75 TE), Ca2+ channel antagonist (46.95% at 10 μM), showing significant neuroprotection (38%) against H2O2 at 10 μM, being considered thus a hit-compound for further investigation in our search for anti-Alzheimer’s disease agents.