Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Water, 3(12), p. 665, 2020

DOI: 10.3390/w12030665

Links

Tools

Export citation

Search in Google Scholar

Impact of Land-Use Changes on Spatiotemporal Suspended Sediment Dynamics within a Peri-Urban Catchment

Journal article published in 2020 by C. S. S. Ferreira ORCID, R. P. D. Walsh, Z. Kalantari ORCID, A. J. D. Ferreira ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Understanding sediment dynamics in peri-urban catchments constitutes a research challenge because of the spatiotemporal complexity and variability of land-uses involved. This study investigates differences in the concentration of total sediments (TSC) and suspended sediments (SSC) in the small peri-urban Mediterranean Ribeira dos Covões catchment (40% urban area) in central Portugal. Suspended sediment responses at the catchment outlet (E) and in three upstream sub-catchments, during periods of urbanization (2011–2013) and stabilizing land-use (2017–2018) are compared for storm-event datasets encompassing similar ranges of rainstorm sizes and antecedent rainfall condition. The Quinta sub-catchment, with the lowest urban area (22%) but subject to major construction activities affecting 17% of its area, led to highest TSC and SSC during urbanization (attaining 4320 mg/L and 4184 mg/L, respectively), and a median reduction of 38% and 69%, respectively, during stabilization. Espírito Santo sub-catchment, with highest urban area (49%) and minor construction activities, displayed similar median TSC in both periods (258–240 mg/L) but highest SSC reduction (76%), highlighting the impact of the anthropogenic disturbance mainly on fine-particle sediments and a good connectivity with the stream. Porto Bordalo sub-catchment, with 39% urban area and subject to the construction of a four-line road covering 1.5% of its area, showed the lowest TSC and SSC concentrations and the lowest median reductions in both periods (31% and 64%, correspondingly), mainly because of the impact of an unplanned retention basin established with soil from the construction site. Overall, median TSC and SSC reduced 14% and 59% at E, from urbanization to stabilization. Information about sediment dynamics should guide stakeholders in establishing strategies to reduce sediment loads and mitigate the impacts on urban aquatic ecosystems.