Published in

American Association for the Advancement of Science, Science, 6462(366), p. 250-254, 2019

DOI: 10.1126/science.aax1522

Links

Tools

Export citation

Search in Google Scholar

Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An inhibitor causes neuronal excitation Glycine is thought to be primarily an inhibitory neurotransmitter. However, it also acts as a coagonist on excitatory N -methyl-D-aspartate (NMDA) receptors. Otsu et al. examined the function of the NMDA receptor subunit combination GluN1/GluN3A in the medial habenula (MHb) of adult mice. This NMDA receptor subunit combination in MHb neurons is activated by glycine released from astrocytes. Activation of GluN1/GluN3A NMDA receptors causes depolarization and increased spiking of MHb neurons. Reducing GluN3A receptor subunit levels in the MHb blocks conditioned place aversion. Science , this issue p. 250