Published in

American Association for the Advancement of Science, Science, 6467(366), p. 850-856, 2019

DOI: 10.1126/science.aaw7493

Links

Tools

Export citation

Search in Google Scholar

Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nanocage-chain fuel cell catalysts The expense and scarcity of platinum has driven efforts to improve oxygen-reduction catalysts in proton-exchange membrane fuel cells. Tian et al. synthesized chains of platinum-nickel alloy nanospheres connected by necking regions. These structures can be etched to form nanocages with platinum-rich surfaces that are highly active for oxygen reduction. In fuel cells running on air and hydrogen, these catalysts operated for at least 180 hours. Science , this issue p. 850