Published in

American Association for the Advancement of Science, Science, 6476(367), p. 405-411, 2020

DOI: 10.1126/science.aax0249

Links

Tools

Export citation

Search in Google Scholar

Single-cell transcriptional diversity is a hallmark of developmental potential

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

More diversity at the top A detailed knowledge of cell differentiation hierarchies is important for understanding diverse biological processes such as organ development, tissue regeneration, and cancer. Single-cell RNA sequencing can help elucidate these hierarchies, but it requires reliable computational methods for predicting cell lineage trajectories. Gulati et al. developed CytoTRACE, a computational framework based on the simple observation that transcriptional diversity—the number of genes expressed in a cell—decreases during differentiation. CytoTRACE outperformed other methods in several test cases and was successfully applied to study cellular hierarchies in healthy and tumor tissue. Science , this issue p. 405