Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6462(366), p. 203-210, 2019

DOI: 10.1126/science.aax3939

Links

Tools

Export citation

Search in Google Scholar

Architecture of human Rag GTPase heterodimers and their complex with mTORC1

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mastering regulation The mechanistic target of rapamycin complex 1 (mTORC1) is known as the master kinase, acknowledging its key role in integrating multiple signals to regulate cell growth. When nutrients are abundant, heterodimers of Rag, a class of small guanosine triphosphatase, bind to mTORC1 and recruit it to the lysosome. Here, other signaling pathways converge on the mTORC1 complex. Anandapadamanaban et al. determined cryo–electron microscopy and crystal structures of a RagA/RagC heterodimer. The structures, together with dynamic studies, explain the nucleotide states required for binding to mTORC1 and support a mechanism for conformational communication between the RagA and RagC subunits in the heterodimer. RagA/RagC binding causes no conformational change in mTORC1, which is consistent with the idea that mTORC1 must sense additional growth regulators before it is activated. Science , this issue p. 203