Published in

Springer, JBIC Journal of Biological Inorganic Chemistry, 2(25), p. 295-303, 2020

DOI: 10.1007/s00775-020-01761-8

Links

Tools

Export citation

Search in Google Scholar

X-ray tomography of cryopreserved human prostate cancer cells: mitochondrial targeting by an organoiridium photosensitiser

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The organoiridium complex Ir[(C,N)2(O,O)] (1) where C, N = 1-phenylisoquinoline and O,O = 2,2,6,6-tetramethyl-3,5-heptanedionate is a promising photosensitiser for Photo-Dynamic Therapy (PDT). 1 is not toxic to cells in the dark. However, irradiation of the compound with one-photon blue or two-photon red light generates high levels of singlet oxygen (1O2) (in Zhang et al. Angew Chem Int Ed Engl 56 (47):14898-14902 10.1002/anie.201709082,2017), both within cell monolayers and in tumour models. Moreover, photo-excited 1 oxidises key proteins, causing metabolic alterations in cancer cells with potent antiproliferative activity. Here, the tomograms obtained by cryo-Soft X-ray Tomography (cryo-SXT) of human PC3 prostate cancer cells treated with 1, irradiated with blue light, and cryopreserved to maintain them in their native state, reveal that irradiation causes extensive and specific alterations to mitochondria, but not other cellular components. Such new insights into the effect of 1O2 generation during PDT using iridium photosensitisers on cells contribute to a detailed understanding of their cellular mode of action. Graphic abstract