Published in

Nature Research, npj Computational Materials, 1(6), 2020

DOI: 10.1038/s41524-020-0289-6

Links

Tools

Export citation

Search in Google Scholar

Imaging mechanism for hyperspectral scanning probe microscopy via Gaussian process modelling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWe investigate the ability to reconstruct and derive spatial structure from sparsely sampled 3D piezoresponse force microcopy data, captured using the band-excitation (BE) technique, via Gaussian Process (GP) methods. Even for weakly informative priors, GP methods allow unambiguous determination of the characteristic length scales of the imaging process both in spatial and frequency domains. We further show that BE data set tends to be oversampled in the spatial domains, with ~30% of original data set sufficient for high-quality reconstruction, potentially enabling faster BE imaging. At the same time, reliable reconstruction along the frequency domain requires the resonance peak to be within the measured band. This behavior suggests the optimal strategy for the BE imaging on unknown samples. Finally, we discuss how GP can be used for automated experimentation in SPM, by combining GP regression with non-rectangular scans.