Published in

Nature Research, npj Clean Water, 1(3), 2020

DOI: 10.1038/s41545-020-0057-7

Links

Tools

Export citation

Search in Google Scholar

Impact of UV irradiation at full scale on bacterial communities in drinking water

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWater in a full-scale drinking water treatment plant was irradiated with ultraviolet (UV) doses of 250, 400, and 600 J/m2, and the effect on bacterial communities investigated using 16s rRNA gene amplicon sequencing, heterotrophic plate counts (HPCs), coliform, and Escherichia coli counts. The bacteria in the irradiated water were also analyzed following storage for 6 days at 7 °C, to approximate the conditions in the distribution system. The log10 reduction of HPCs at 400 J/m2 was 0.43 ± 0.12. Phylogenetic examination, including DESeq2 analysis, showed that Actinobacteria was more resistant to UV irradiation, whereas Bacteroidetes was sensitive to UV. Phylum Proteobacteria contained monophyletic groups that were either sensitive or resistant to UV exposure. The amplicon sequence variants (ASVs) resistant to UV irradiation had a greater average GC content than the ASVs sensitive to UV, at 55% ± 1.7 (n = 19) and 49% ± 2.5 (n = 16), respectively. Families Chitinophagaceae, Pelagibacteraceae, Holophagaceae, Methylophilaceae, and Cytophagaceae decreased linearly in relative abundance, with increasing UV dose (P < 0.05, Pearson’s correlation). When irradiated water was stored, Chitinophagaceae, Comamonadaceae, and Flavobacteriaceae families decreased in relative abundance, whereas ACK-M1, Mycobacteriaceae, and Nitrosomonadaceae were increasing in relative abundance. This suggests that the impact of UV irradiation cannot only be considered directly after application but that this treatment step likely continues to influence microbial dynamics throughout the distribution system.