Published in

IOP Publishing, Journal of Physics: Condensed Matter, 32(32), p. 324003, 2020

DOI: 10.1088/1361-648x/ab808d

Links

Tools

Export citation

Search in Google Scholar

Site selective adsorption of the spin crossover complex Fe(phen)2(NCS) on Au(111)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The iron(II) spin crossover complex Fe(1,10-phenanthroline)2(NCS)2, dubbed Fe-phen, has been studied with scanning tunneling microscopy, after adsorption on the ‘herringbone’ reconstructed surface of Au(111) for sub-monolayer coverages. The Fe-phen molecules attach, through their NCS-groups, to the Au atoms of the fcc domains of the reconstructed surface only, thereby lifting the herringbone reconstruction. The molecules stack to form 1D chains, which run along the Au[110] directions. Neighboring Fe-phen molecules are separated by approximately 2.65 nm, corresponding to 9 atomic spacings in this direction. The molecular axis, defined by the two phenanthroline groups, is aligned perpendicular to the chain axis, along the Au 22 1 ¯ direction, thereby bridging over 5 atomic spacings, in this direction. Experimental evidence suggests that the molecular spins are locked in a mixed state in the sub-monolayer regime at temperatures between 100 K and 300 K.