Published in

MDPI, International Journal of Molecular Sciences, 6(21), p. 2031, 2020

DOI: 10.3390/ijms21062031

Links

Tools

Export citation

Search in Google Scholar

Difference in Profiles of the Gut-Derived Tryptophan Metabolite Indole Acetic Acid between Transplanted and Non-Transplanted Patients with Chronic Kidney Disease

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Uremic toxins have emerged as potential mediators of morbidity and mortality in patients with chronic kidney disease (CKD). Indole-3-acetic acid (IAA, a tryptophan-derived uremic toxin) might be a useful biomarker in patients with CKD. The objectives of the present study were to (i) describe IAA concentrations in a cohort of non-transplanted patients with CKD and a cohort of transplanted patients with CKD, and (ii) investigate the possible relationship between IAA levels and adverse outcomes in the two cohorts. Methods: Levels of free and total IAA were assayed in the two prospective CKD cohorts (140 non-transplanted patients and 311 transplanted patients). Cox multivariate analyses were used to evaluate the association between IAA levels and outcomes (mortality, cardiovascular events, and graft loss). Results: In the non-transplanted CKD cohort, free and total IAA increased progressively with the CKD stage. In the transplanted CKD cohort, free and total IAA levels were elevated at the time of transplantation but had fallen substantially at one-month post-transplantation. Indole acetic acid concentrations were lower in transplanted patients than non-dialysis non-transplanted patients matched for estimated glomerular filtration rate (eGFR), age, and sex. After adjustment for multiple confounders, the free IAA level predicted overall mortality and cardiovascular events in the non-transplanted CKD cohort (hazard ratio [95% confidence interval]: 2.5 [1.2–5.1] and 2.5 [1.3–4.8], respectively). In the transplanted CKD cohort, however, no associations were found between free or total IAA on one hand, and mortality, CV event, or graft survival on the other. Conclusion: We demonstrated that levels of IAA increase with the CKD stage, and fall substantially, even normalizing, after kidney transplantation. Free IAA appears to be a valuable outcome-associated biomarker in non-transplanted patients, but—at least in our study setting—not in transplanted patients.