Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Ceramics, 1(3), p. 53-64, 2020

DOI: 10.3390/ceramics3010007

Links

Tools

Export citation

Search in Google Scholar

Microstructure and Mechanical Properties of Zirconia (3Y-TZP)/Zr Composites Prepared by Wet Processing and Subsequent Spark Plasma Sintering

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ZrO2 (3Y-TZP) matrix composites with 30 vol % Zr metallic particles were obtained by spark plasma sintering (SPS) using a colloidal processing method. The microstructure and mechanical properties of this novel ceramic–metal composite have been studied. The fracture toughness of composites is slightly higher than the values corresponding to monolithic zirconia. Scanning electron microscope (SEM) observations of the crack path show that the major contributions to toughening are the resulting crack blunting and branching that occurs at crack tips in the metallic particles before the onset of crack propagation. Plastic deformation of the metallic particles is strongly influenced by the constraint induced by the different phase arrangements. This system can be considered as a particulate composite with a periodic residual stress field, in which the metal phase is under strong compression due to the residual thermal stresses as a consequence of the coefficient of thermal expansion mismatch. Therefore, the plastic deformation of the metallic particles in this composite is likely to be reduced to a large extent.