Published in

Oxford University Press, Publications of Astronomical Society of Japan, Supplement_1(73), p. S273-S284, 2020

DOI: 10.1093/pasj/psaa005

Links

Tools

Export citation

Search in Google Scholar

High-mass star formation in Orion possibly triggered by cloud–cloud collision. III. NGC 2068 and NGC 2071

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Using the NANTEN2 Observatory, we carried out a molecular-line study of high-mass star forming regions with reflection nebulae, NGC 2068 and NGC 2071, in Orion in the $^{13}$CO($J = 2$–1) transition. The $^{13}$CO distribution shows that there are two velocity components at ${9.0}$ and ${10.5}\:$km$\:$s$^{-1}$. The blue-shifted component is in the northeast associated with NGC 2071, whereas the red-shifted component is in the southwest associated with NGC 2068. The total intensity distribution of the two clouds shows a gap of $∼\!\! 1\:$pc, suggesting that they are detached at present. A detailed spatial comparison indicates that the two show complementary distributions. The blue-shifted component lies toward an intensity depression to the northwest of the red-shifted component, where we find that a displacement of ${0.8}\:$pc makes the two clouds fit well with each other. Furthermore, a new simulation of non-frontal collisions shows that observations from $60^∘$ off the collisional axis agreed well with the velocity structure in this region. On the basis of these results, we hypothesize that the two components collided with each other at a projected relative velocity of ${3.0}\:$km$\:$s$^{-1}$. The timescale of the collision is estimated to be ${0.3}\:$Myr for an assumed axis of the relative motion $60^∘$ off the line of sight. We assume that the two most massive early B-type stars in the cloud, illuminating stars of the two reflection nebulae, were formed by collisional triggering at the interfaces between the two clouds. Given the other young high-mass star-forming regions, namely, M 42, M 43, and NGC 2024 (Fukui et al. 2018a, ApJ, 859, 166; Ohama et al. 2017, arXiv: 1706.05652), it seems possible that collisional triggering has been independently working to form O-type and early B-type stars in Orion in the last Myr over a projected distance of ∼80 pc.