Published in

Springer Nature [academic journals on nature.com], Light: Science and Applications, 1(9), 2020

DOI: 10.1038/s41377-020-0279-y

Links

Tools

Export citation

Search in Google Scholar

Heterostructure and Q-factor engineering for low-threshold and persistent nanowire lasing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractContinuous room temperature nanowire lasing from silicon-integrated optoelectronic elements requires careful optimisation of both the lasing cavity Q-factor and population inversion conditions. We apply time-gated optical interferometry to the lasing emission from high-quality GaAsP/GaAs quantum well nanowire laser structures, revealing high Q-factors of 1250 ± 90 corresponding to end-facet reflectivities of R = 0.73 ± 0.02. By using optimised direct–indirect band alignment in the active region, we demonstrate a well-refilling mechanism providing a quasi-four-level system leading to multi-nanosecond lasing and record low room temperature lasing thresholds (~6 μJ cm−2 pulse−1) for III–V nanowire lasers. Our findings demonstrate a highly promising new route towards continuously operating silicon-integrated nanolaser elements.