Dissemin is shutting down on January 1st, 2025

Published in

Canadian Science Publishing, Canadian Journal of Chemistry, 6(97), p. 422-429, 2019

DOI: 10.1139/cjc-2018-0360

Links

Tools

Export citation

Search in Google Scholar

Fluorescence anisotropy imaging of a polydiacetylene photopolymer film

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

UV-illumination of phase-separated surfactant films prepared from mixtures of photopolymerizable 10,12-pentacosadiynoic acid and perfluorotetradecanoic acid results in the formation of fluorescent polydiacetylene fibers and aggregates. In this work, the orientation of polymer strands that comprise the resulting photopolymer structures has been probed using fluorescence anisotropy imaging in combination with defocused single-molecule fluorescence imaging. Imaging experiments indicate the presence of significant fiber-to-fiber heterogeneity, as well as anisotropy within each fiber (or aggregate), with both of these properties changing as a function of film preparation conditions. This anisotropy can be attributed to various alignments of the constituent polymer strands that comprise the larger fibers and aggregates. Intriguingly, when using defocused imaging, fiber images consisted of a series of discrete “doughnut” fluorescence emission patterns, which exhibited intermittent on–off blinking behavior; both of these properties are characteristic of individual emission transition dipoles (single molecules). Further, all of the individual emission transition dipoles had a uniform orientation with respect to the axis of the fiber, indicating a common orientation of discrete emitters in the larger polymer fiber. The implications of these results for future studies of the electronic properties of conjugated polymers in larger macroscopic systems are noted.