Published in

Oxford University Press (OUP), Pathogens and Disease, 1(78), 2020

DOI: 10.1093/femspd/ftaa010

Links

Tools

Export citation

Search in Google Scholar

Comparison of Pseudomonas aeruginosa strains reveals that Exolysin A toxin plays an additive role in virulence

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Background Pseudomonas aeruginosa possesses an array of virulence genes ensuring successful infection development. A two-partner secretion system Exolysin BA (ExlBA) is expressed in the PA7-like genetic outliers consisting of ExlA, a pore-forming toxin and ExlB transporter protein. Presence of exlBA in multidrug-resistant (MDR) strains has not been investigated, particularly in the strains isolated from wounded soldiers. Methods We screened whole genome sequences of 2439 MDR- P. aeruginosa strains for the presence of exlBA. We compiled all exlBA positive strains and compared them with a diversity set for demographics, antimicrobial profiles and phenotypic characteristics: surface motility, biofilm formation, pyocyanin production and hemolysis. We compared the virulence of strains with comparable phenotypic characteristics in Galleria mellonella. Results We identified 33 exlBA-positive strains (1.5%). These strains have increased antibiotic resistance, they are more motile, produce more robust biofilms and have comparable pyocianin production with the diversity set despite the phenotypic differences within the group. In in vivo infection models, these strains were less virulent than Type III Secretion System (T3SS) positive counterparts. Conclusions exlBA-positive strains are wide spread among the PA7-like outliers. While not as virulent as strains possessing T3SS, these strains exhibit phenotypic features associated with virulence and are still lethal in vivo.