Published in

Oxford University Press (OUP), Journal of the National Cancer Institute, 3(112), p. 278-285, 2019

DOI: 10.1093/jnci/djz113

Links

Tools

Export citation

Search in Google Scholar

Comparative Validation of Breast Cancer Risk Prediction Models and Projections for Future Risk Stratification

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background External validation of risk models is critical for risk-stratified breast cancer prevention. We used the Individualized Coherent Absolute Risk Estimation (iCARE) as a flexible tool for risk model development and comparative model validation and to make projections for population risk stratification. Methods Performance of two recently developed models, one based on the Breast and Prostate Cancer Cohort Consortium analysis (iCARE-BPC3) and another based on a literature review (iCARE-Lit), were compared with two established models (Breast Cancer Risk Assessment Tool and International Breast Cancer Intervention Study Model) based on classical risk factors in a UK-based cohort of 64 874 white non-Hispanic women (863 patients) age 35–74 years. Risk projections in a target population of US white non-Hispanic women age 50–70 years assessed potential improvements in risk stratification by adding mammographic breast density (MD) and polygenic risk score (PRS). Results The best calibrated models were iCARE-Lit (expected to observed number of cases [E/O] = 0.98, 95% confidence interval [CI] = 0.87 to 1.11) for women younger than 50 years, and iCARE-BPC3 (E/O = 1.00, 95% CI = 0.93 to 1.09) for women 50 years or older. Risk projections using iCARE-BPC3 indicated classical risk factors can identify approximately 500 000 women at moderate to high risk (>3% 5-year risk) in the target population. Addition of MD and a 313-variant PRS is expected to increase this number to approximately 3.5 million women, and among them, approximately 153 000 are expected to develop invasive breast cancer within 5 years. Conclusions iCARE models based on classical risk factors perform similarly to or better than BCRAT or IBIS in white non-Hispanic women. Addition of MD and PRS can lead to substantial improvements in risk stratification. However, these integrated models require independent prospective validation before broad clinical applications.