Published in

IOP Publishing, Environmental Research Communications, 3(2), p. 031001, 2020

DOI: 10.1088/2515-7620/ab7b92

Links

Tools

Export citation

Search in Google Scholar

Impact of the June 2018 Saddleworth Moor wildfires on air quality in northern England

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The June 2018 Saddleworth Moor fires were some of the largest UK wildfires on record and lasted for approximately three weeks. They emitted large quantities of smoke, trace gases and aerosols which were transported downwind over the highly populated regions of Manchester and Liverpool. Surface observations of PM2.5 indicate that concentrations were 4–5.5 times higher than the recent seasonal average. State-of-the-art satellite measurements of total column carbon monoxide (TCCO) from the TROPOMI instrument on the Sentinel 5—Precursor (S5P) platform, coupled with measurements from a flight of the UK BAe-146–301 research aircraft, are used to quantify the substantial enhancement in emitted trace gases. The aircraft measured plume enhancements with near-fire CO and PM2.5 concentrations >1500 ppbv and >125 μg m−3 (compared to ∼100 ppbv and ∼5 μg m−3 background concentrations). Downwind fire-plume ozone (O3) values were larger than the near-fire location, indicating O3 production with distance from source. The near-fire O3:CO ratio was (ΔO3/ΔCO) 0.001 ppbv/ppbv, increasing downwind to 0.060–0.105 ppbv/ppbv, suggestive of O3 production enhancement downwind of the fires. Emission rates of CO and CO2 ranged between 1.07 (0.07–4.69) kg s−1 and 13.7 (1.73–50.1) kg s−1, respectively, similar to values expected from a medium sized power station.