Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Metals, 8(9), p. 848, 2019

DOI: 10.3390/met9080848

Links

Tools

Export citation

Search in Google Scholar

Effect of Quench Polish Quench Nitriding Temperature on the Microstructure and Wear Resistance of SAF2906 Duplex Stainless Steel

Journal article published in 2019 by Xiang, Wu, Liu, Cao ORCID, Dong
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The effect of quench polish quench (QPQ) nitriding temperature on the microstructure and wear resistance of SAF2906 duplex stainless steel was investigated. Results showed the surface of the nitrided samples was composed of an oxidized layer, a loose compound layer, a compact compound layer, and a diffusion layer. The oxidized layer was composed of Fe3O4. The main phases of the loose compound layer were CrN, αN, Fe2–3N, and Fe3O4. The compact compound layer was composed of CrN, αN, and Fe2–3N. In the diffusion layer, CrN and expanded austenite (S) were the main phases. The nitrided layer thickness increased from 20 to 41 μm with an increasing temperature of 570 to 610 °C. When the nitriding temperature was above 590 °C, the precipitates in the diffusion layer became coarsened, and their morphologies gradually changed from spherical particulate to rod-like and flocculent-like. Tribotests showed the cumulative mass loss of QPQ-treated samples was much lower than that of the substrate. The cumulative mass loss of the samples nitrided at 610 °C was higher than that at 570 °C during the first 29 h. When the test time was over 29 h, the former was lower than the latter.