Published in

MDPI, International Journal of Environmental Research and Public Health, 21(16), p. 4237, 2019

DOI: 10.3390/ijerph16214237

Links

Tools

Export citation

Search in Google Scholar

Does Croton Argyrophyllus Extract Has an Effect on Muscle Damage and Lipid Peroxidation in Rats Submitted to High Intensity Strength Exercise?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Many species of the genus Croton have been used for anti-inflammatory, antiproliferative, antidiabetic, and antitumor purposes. The objective was to evaluate the effect of a hydroethanolic extract (HEE) from the inner bark of Croton argyrophyllus (Euphorbiaceae) on muscle damage and oxidative stress in rats after high intensity exercise. The animals were divided into four groups: (i) the sedentary group (SV; n = 7), (ii) the exercise vehicle group (EV, n = 7), (iii) the sedentary group HEE (SHG; n = 7) composed of sedentary animals and treated with the hydroethanolic extract of C. argyrophyllus (200 mg/kg, v.o.), and (iv) the HEE exercise group (HEE; n = 7) composed of animals submitted to resistance exercise (RE) and treated with the hydroethanolic extract of C. argyrophyllus (200 mg/kg, v.o.). In the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test, the HEE showed lower values of inhibition potential (IP%) at 39.79% compared to gallic acid, 87.61%, and lipoperoxidation inhibition at 27.4% (100 µg/mL) or 28.6% (200 µg/mL) (p < 0.001). There was inhibition in free radicals in vivo. The HEE of C. argyrophyllus partially reduced the biomarkers of oxidative stress in muscle tissue and muscular damage (creatine kinase (CK) and Lactate Dehydrogenase (LDH)) (p < 0.05) in rats, and in this sense it can be an aid to the recovery process after exhaustive efforts.