Published in

MDPI, ISPRS International Journal of Geo-Information, 10(8), p. 460, 2019

DOI: 10.3390/ijgi8100460

Links

Tools

Export citation

Search in Google Scholar

Optimizing Wireless Sensor Network Installations by Visibility Analysis on 3D Point Clouds

Journal article published in 2019 by Gracchi, Gigli, Noël, Jaboyedoff ORCID, Madiai, Casagli
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper, a MATLAB tool for the automatic detection of the best locations to install a wireless sensor network (WSN) is presented. The implemented code works directly on high-resolution 3D point clouds and aims to help in positioning sensors that are part of a network requiring inter-visibility, namely, a clear line of sight (LOS). Indeed, with the development of LiDAR and Structure from Motion technologies, there is an opportunity to directly use 3D point cloud data to perform visibility analyses. By doing so, many disadvantages of traditional modelling and analysis methods can be bypassed. The algorithm points out the optimal deployment of devices following mainly two criteria: inter-visibility (using a modified version of the Hidden Point Removal operator) and inter-distance. Furthermore, an option to prioritize significant areas is provided. The proposed method was first validated on an artificial 3D model, and then on a landslide 3D point cloud acquired from terrestrial laser scanning for the real positioning of an ultrawide-band WSN already installed in 2016. The comparison between collected data and data acquired by the WSN installed following traditional patterns has demonstrated its ability for the optimal deployment of a WSN requiring inter-visibility.