Published in

Rockefeller University Press, Journal of Cell Biology, 2(218), p. 644-663, 2019

DOI: 10.1083/jcb.201806205

Links

Tools

Export citation

Search in Google Scholar

A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor

Journal article published in 2019 by Lei Liu ORCID, Li Ding, Matteo Rovere ORCID, Michael S. Wolfe, Dennis J. Selkoe ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Intramembrane proteolysis of transmembrane substrates by the presenilin–γ-secretase complex is preceded and regulated by shedding of the substrate’s ectodomain by α- or β-secretase. We asked whether β- and γ-secretases interact to mediate efficient sequential processing of APP, generating the amyloid β (Aβ) peptides that initiate Alzheimer’s disease. We describe a hitherto unrecognized multiprotease complex containing active β- and γ-secretases. BACE1 coimmunoprecipitated and cofractionated with γ-secretase in cultured cells and in mouse and human brain. An endogenous high molecular weight (HMW) complex (∼5 MD) containing β- and γ-secretases and holo-APP was catalytically active in vitro and generated a full array of Aβ peptides, with physiological Aβ42/40 ratios. The isolated complex responded properly to γ-secretase modulators. Alzheimer’s-causing mutations in presenilin altered the Aβ42/40 peptide ratio generated by the HMW β/γ-secretase complex indistinguishably from that observed in whole cells. Thus, Aβ is generated from holo-APP by a BACE1–γ-secretase complex that provides sequential, efficient RIP processing of full-length substrates to final products.