Published in

Hans Publishers, Astronomy & Astrophysics, (620), p. L8, 2018

DOI: 10.1051/0004-6361/201834228

Links

Tools

Export citation

Search in Google Scholar

(3200) Phaethon: Bulk density from Yarkovsky drift detection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Context. The recent close approach of the near-Earth asteroid (3200) Phaethon offered a rare opportunity to obtain high-quality observational data of various types. Aims. We used the newly obtained optical light curves to improve the spin and shape model of Phaethon and to determine its surface physical properties derived by thermophysical modeling. We also used the available astrometric observations of Phaethon, including those obtained by the Arecibo radar and the Gaia spacecraft, to constrain the secular drift of the orbital semimajor axis. This constraint allowed us to estimate the bulk density by assuming that the drift is dominated by the Yarkovsky effect. Methods. We used the convex inversion model to derive the spin orientation and 3D shape model of Phaethon, and a detailed numerical approach for an accurate analysis of the Yarkovsky effect. Results. We obtained a unique solution for Phaethon’s pole orientation at (318 ° , − 47 ° ) ecliptic longitude and latitude (both with an uncertainty of 5°), and confirm the previously reported thermophysical properties (D = 5.1 ± 0.2 km, Γ = 600 ± 200J m−2 s−0.5 K−1). Phaethon has a top-like shape with possible north-south asymmetry. The characteristic size of the regolith grains is 1 − 2 cm. The orbit analysis reveals a secular drift of the semimajor axis of −(6.9 ± 1.9)×10−4 au Myr−1. With the derived volume-equivalent size of 5.1 km, the bulk density is 1.67 ± 0.47 g cm−3. If the size is slightly larger ∼5.7 − 5.8 km, as suggested by radar data, the bulk density would decrease to 1.48 ± 0.42 g cm−3. We further investigated the suggestion that Phaethon may be in a cluster with asteroids (155140) 2005 UD and (225416) 1999 YC that was formed by rotational fission of a critically spinning parent body. Conclusions. Phaethon’s bulk density is consistent with typical values for large (> 100 km) C-complex asteroids and supports its association with asteroid (2) Pallas, as first suggested by dynamical modeling. These findings render a cometary origin unlikely for Phaethon.