Published in

Elsevier, Ultrasound in Medicine and Biology, 9(34), p. 1465-1473, 2008

DOI: 10.1016/j.ultrasmedbio.2008.01.020

Links

Tools

Export citation

Search in Google Scholar

Nonspherical oscillations of ultrasound contrast agent microbubbles.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The occurrence of nonspherical oscillations (or surface modes) of coated microbubbles, used as ultrasound contrast agents in medical imaging, is investigated using ultra-high-speed optical imaging. Optical tweezers designed to micromanipulate single bubbles in 3-D are used to trap the bubbles far from any boundary, enabling a controlled study of the nonspherical oscillations of free-floating bubbles. Nonspherical oscillations appear as a parametric instability and display subharmonic behavior: they oscillate at half the forcing frequency, which was fixed at 1.7 MHz in this study. Surface modes are shown to preferentially develop for a bubble radius near the resonance of radial oscillations. In the studied range of acoustic pressures, the growth of surface modes saturates at a level far below bubble breakage. With the definition of a single, dimensionless deformation parameter, the amplitude of nonspherical deformation is quantified as a function of the bubble radius (between 1.5 and 5 microm) and of the acoustic pressure (up to 200 kPa).