Published in

American Society of Clinical Oncology, Journal of Clinical Oncology, 15_suppl(37), p. 3030-3030, 2019

DOI: 10.1200/jco.2019.37.15_suppl.3030

Links

Tools

Export citation

Search in Google Scholar

Anticancer activity in patients with advanced ovarian and biliary tract cancers treated with NUC-1031 and a platinum agent.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

3030 Background: The inhibition of cellular nucleotide metabolism to promote apoptosis is a key principle of cancer therapy. This, in combination with platinum-induced DNA-damage, is key to promoting anti-cancer activity in a variety of tumors, including ovarian, biliary tract, lung, breast and bladder. NUC-1031, a phosphoramidate transformation of gemcitabine is designed to overcome resistance mechanisms that limit the efficacy of this nucleoside analog. NUC-1031 has shown broad clinical activity across multiple solid tumors as both a single agent and in combination with platinum agents. We show potential synergism between NUC-1031 and a platinum agent in advanced ovarian (OC) and biliary tract (BTC) cancers. Methods: PRO-002 was a phase Ib study; 25 patients (pts) with recurrent OC who had exhausted all other therapy options received NUC-1031 + carboplatin. 17 pts were considered platinum resistant (10) or platinum refractory (7). ABC-08 is a phase Ib study, 14 pts with advanced BTC treated in the first-line setting with NUC-1031 + cisplatin. Results: In PRO-002, strong efficacy signals were observed in non-platinum-responsive patients. Of the 17 response-evaluable platinum-resistant or refractory pts, 5 partial responses (PRs) and 11 stable diseases (SDs) were achieved, resulting in an ORR of 29% and a DCR of 94%. NUC-1031 + carboplatin was well-tolerated with no unexpected AEs; DLTs were myelosuppression and fatigue. Encouraging response rates were also observed in ABC-08 compared to historical standard of care (ABC-02). One CR (7%), 6 PRs (43%) and 1 SD (7%) were observed, resulting in an ORR of 50%. NUC-1031 + cisplatin was well-tolerated, with no unexpected AEs or DLTs. Complementary in vitro evidence suggests that the beneficial interaction occurs whereby platinum treatment sensitizes cells to NUC-1031. Conclusions: Increasing evidence suggests that NUC-1031 in combination with a platinum agent may have synergistic properties, leading to enhanced anti-cancer activity. In both OC and BTC, durable tumor shrinkage was observed. This was particularly encouraging in a platinum resistant/refractory OC population. Future studies utilizing both NUC-1031 plus a platinum agent will further elucidate the potential of this therapeutic combination.