Full text: Unavailable
Abstract Recent work has suggested that a tradeoff exists between habitat area and habitat heterogeneity, with a moderate amount of heterogeneity supporting greatest species richness. Support for this unimodal relationship has been mixed and has differed among habitats and taxa. We examined the relationship between habitat heterogeneity and species richness after accounting for habitat area in glacially formed wetlands in the Prairie Pothole Region in the United States at both local and landscape scales. We tested for area–habitat heterogeneity tradeoffs in wetland bird species richness, the richness of groups of similar species, and in species’ abundances. We then identified the habitat relationships for individual species and the relative importance of wetland area vs. habitat heterogeneity and other wetland characteristics. We found that habitat area was the primary driver of species richness and abundance. Additional variation in richness and abundance could be explained by habitat heterogeneity or other wetland and landscape characteristics. Overall avian species richness responded unimodally to habitat heterogeneity, suggesting an area–heterogeneity tradeoff. Group richness and abundance metrics showed either unimodal or linear relationships with habitat heterogeneity. Habitat heterogeneity indices at local and landscape scales were important for some, but not all, species and avian groups. Both abundance of individual species and species richness of most avian groups were higher on publicly owned wetlands than on privately owned wetlands, on restored wetlands than natural wetlands, and on permanent wetlands than on wetlands of other classes. However, we found that all wetlands examined, regardless of ownership, restoration status, and wetland class, supported wetland-obligate birds. Thus, protection of all wetland types contributes to species conservation. Our results support conventional wisdom that protection of large wetlands is a priority but also indicate that maintaining habitat heterogeneity will enhance biodiversity and support higher populations of individual species.