Published in

American Astronomical Society, Astrophysical Journal, 1(671), p. 637-644, 2007

DOI: 10.1086/522829

Links

Tools

Export citation

Search in Google Scholar

Observational signatures of high-energy emission during the shallow decay phase of gamma-ray burst X-ray afterglows

Journal article published in 2007 by Yw W. Yu ORCID, Xw W. Liu, Zg G. Dai
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The widely existing shallow decay phase of the X-ray afterglows of gamma-ray bursts (GRBs) is generally accepted to be due to long-lasting energy injection. The outflows carrying the injecting energy, based on the component that is dominative in energy, fall into two possible types: baryon-dominated and lepton-dominated ones. The former type of outflow could be ejecta that is ejected during the prompt phase of a GRB and consists of a series of baryonic shells with a distribution of Lorentz factors, and the latter type could be an electron-positron-pair wind that is driven by the post-burst central engine. We here provide a unified description for the dynamics of fireballs based on these two types of energy injection, and calculate the corresponding high-energy photon emission by considering synchrotron radiation and inverse Compton scattering (including synchrotron self-Compton and combined inverse-Compton) of electrons. We find that, in the two energy-injection models, there is a plateau (even a hump) in high-energy light curves during the X-ray shallow decay phase. In particular, a considerable fraction of the injecting energy in the lepton-dominated model can be shared by the long-lasting reverse shock since it is relativistic. Furthermore, almost all of the energy of the reverse shock is carried by leptons, and thus the inverse-Compton emission is enhanced dramatically. Therefore, this model predicts more significant high-energy afterglow emission than the baryon-dominated model. We argue that these observational signatures would be used to discriminate between different energy-injection models in the upcoming {\em Gamma-ray Large Area Space Telescope} (GLAST) era. ; Comment: 22 pages, 7 figures, accepted for publication in ApJ