Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Cancer Research, 11(80), p. 2325-2339, 2020

DOI: 10.1158/0008-5472.can-19-3870

Links

Tools

Export citation

Search in Google Scholar

RUNX1 is a driver of renal cell carcinoma correlating with clinical outcome

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The recurring association of specific genetic lesions with particular types of cancer is a fascinating and largely unexplained area of cancer biology. This is particularly true of clear cell renal cell carcinoma (ccRCC) where, although key mutations such as loss of VHL is an almost ubiquitous finding, there remains a conspicuous lack of targetable genetic drivers. In this study, we have identified a previously unknown protumorigenic role for the RUNX genes in this disease setting. Analysis of patient tumor biopsies together with loss-of-function studies in preclinical models established the importance of RUNX1 and RUNX2 in ccRCC. Patients with high RUNX1 (and RUNX2) expression exhibited significantly poorer clinical survival compared with patients with low expression. This was functionally relevant, as deletion of RUNX1 in ccRCC cell lines reduced tumor cell growth and viability in vitro and in vivo. Transcriptional profiling of RUNX1-CRISPR–deleted cells revealed a gene signature dominated by extracellular matrix remodeling, notably affecting STMN3, SERPINH1, and EPHRIN signaling. Finally, RUNX1 deletion in a genetic mouse model of kidney cancer improved overall survival and reduced tumor cell proliferation. In summary, these data attest to the validity of targeting a RUNX1-transcriptional program in ccRCC. Significance: These data reveal a novel unexplored oncogenic role for RUNX genes in kidney cancer and indicate that targeting the effects of RUNX transcriptional activity could be relevant for clinical intervention in ccRCC.