BioMed Central, Acta Neuropathologica Communications, 1(3), 2015
DOI: 10.1186/s40478-015-0212-4
Full text: Download
Abstract Introduction Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder, and cytoplasmic inclusions containing transactive response (TAR) DNA binding protein (TDP-43) are present in ~90 % of cases. Here we report detailed pathology in human TDP-43 transgenic mice that recapitulate key features of TDP-43-linked ALS. Results Expression of human wild-type TDP-43 (TDP-43 WT ) caused no clinical or pathological phenotype, while expression of Q331K mutant (TDP-43 Q331K ) resulted in a non-lethal age-dependent motor phenotype, accompanied by cytoplasmic TDP-43 aggregation, mild neuronal loss, with astroglial and microglial activation in the motor cortex and spinal cord at 24 months. However, co-expression of WT and Q331K mutant (TDP-43 WTxQ331K ) resulted in an extremely aggressive motor phenotype with tremor from 3 weeks and progressive hind-limb paralysis necessitating euthanasia by 8–10 weeks of age. Neuronal loss and reactive gliosis was observed in the spinal cord and layer V region of the cortex, with TDP-43, ubiquitin and p62 cytoplasmic inclusions and an increase in insoluble TDP-43. Nuclear clearance of TDP-43 was not observed in TDP-43 Q331K mice but was seen in 65 % of aggregate containing spinal cord motor neurons in TDP-43 WTxQ331K mice. Conclusions We hypothesise that cytoplasmic TDP-43 Q331K aggregates facilitate the recruitment of WT protein in compound animals, which dramatically accelerates neurodegeneration and disease progression. The exploration of disease mechanisms in slow and rapid disease models of TDP-43 proteinopathy will help elucidate novel drug targets and provide a more informative platform for preclinical trials.